Nephrotic Syndrome in Pediatric Patients

Epidemiology
- In the United States, incidence of 2.7 cases per 100,000 children per year
- Cumulative prevalence of 16 per 100,000 children
- More common in boys than girls in younger age groups, but once adolescence is reached there is no significant difference between genders
- Most commonly seen at ages 3 to 5
- Increased incidence and more severe disease seen in African American and Hispanic populations

Pathophysiology
- Normally, the glomerular filtration barrier is composed of 3 layers, listed from capillary side to Bowman’s space side:
 - Fenestrated endothelium
 - Glomerular basement membrane
 - Negatively charged to prevent the passage of large anionic molecules (such as albumin)
 - Visceral glomerular epithelium, also known as podocytes
 - Podocytes contain foot processes, which create a barrier
 - Small pores between adjacent foot processes are bridged by slit diaphragms
 - Podocytes affect the structure and function of both the glomerular basement membrane and the endothelial cells
- Size discrimination is accomplished by the pores in the glomerular basement membrane and podocytes which have a radius of approximately 40 to 45 angstroms

- In nephrotic syndrome, the normal glomerular filtration process is interrupted, resulting in protein passing through the filtration barrier and severe-range proteinuria
Nephrotic Syndrome in Pediatric Patients

- Commonly a defect in the podocytes and/or glomerular basement membrane
- Recent experiments have implicated T-Cells in the damage to podocytes leading to 2 common types of nephrotic syndrome (minimal change disease and focal-segmental glomerulosclerosis)
- Exact pathology varies depending on the specific type of nephritic syndrome

Types of nephrotic syndrome:
- **Minimal change disease**
 - Most common pathology found in childhood nephrotic syndrome (77-85% of cases)
 - Usually idiopathic, though an association with Hodgkin lymphoma has been studied in adult cases
 - As name implies, light microscopy of renal biopsy samples shows no change
 - On electron microscopy, effacement of the foot processes can be seen
 - Immunofluorescent staining for immune complexes is negative

- **Focal segmental glomerulosclerosis**
 - Accounts for 10-15% of cases
 - More common in adults
 - Light microscopy of renal biopsy sample shows scarring, or sclerosis, of portions of selected glomeruli which can progress into global glomerular sclerosis and tubular atrophy
 - Like minimal change disease, will see effacement of foot processes on EM and in most cases, negative

Foot process effacement seen in minimal change disease
Nephrotic Syndrome in Pediatric Patients

immunofluorescence (no immune complex or antibody deposition)

- Also usually idiopathic but can be associated with HIV or sickle cell disease
- Potentially on a spectrum with minimal change disease as opposed to being completely separate entities
 - The two share pathologic findings and occasionally respond similarly to treatment

Typical H&E stain of FSGS

- Membranoproliferative glomerulonephritis
 - More commonly presents as nephritic syndrome
 - Involves immune complex deposition
 - Granular pattern seen on immunofluorescence staining
 - On light microscopy, can see thickened basement membrane
- Membranous glomerulonephritis
 - Accounts for just 2-4% of cases in children, but the most common type in adults
 - Like membranoproliferative disease, can see thickened basement membrane and granular pattern on immunofluorescence
 - On electron microscopy, characteristic “spike and dome” appearance seen, with membrane deposition growing around subepithelial immune complex deposition
 - Can be a primary disease, or due to several other causes

Classifications:

- Primary nephrotic syndrome
 - Not due to any identifiable systemic disease
Secondary nephrotic syndrome
 o Caused by identifiable systemic disease
 ▪ Infections
 • Hepatitis B and C, HIV, malaria, syphilis
 ▪ Drugs
 • Non-steroidal anti-inflammatory drugs, heroin, lithium
 ▪ Malignancies
 • Lymphoma, leukemia
 ▪ Auto-immune
 • SLE
 ▪ Endocrine
 • Diabetes mellitus
Congenital nephrotic syndrome
 o Finnish type (CNF)
 ▪ Most common congenital nephrotic syndrome, with an incidence of 1 per 8,200 in Finland
 • Not only seen in Finland, it is especially prominent in Mennonites in Pennsylvania
 ▪ Genetic mutation in the NPHS1 gene which codes for the protein nephrin or NPHS2, which codes for the protein podocin
 ▪ Massive proteinuria starts in fetal life, and prematurity usually complicates pregnancies
 ▪ Treatment is aimed at supporting the patient’s growth until a transplant is available
 o Other genetic mutations that lead to nephrotic syndrome lead to a FSGS type pathology and include the following genes: CD2AP, TRPC6, WT1, ACTIN4, tRNA(leu), COQ2

CLINICAL PRESENTATION
 • Characteristic findings:
 o Proteinuria
 o Hypoalbuminemia
 ▪ Secondary to proteinuria
 o Generalized edema
 ▪ Due to a decrease in plasma oncotic pressure which follows massive albumin urinary losses
 ▪ Begins in areas with low resistance, which can be seen in minimal change disease’s characteristic eyelid swelling, or “puffy eyes”
 • Can also lead to scrotal or vulvar edema
 o Hyperlipidemia
 ▪ Likely due to increased hepatic production of very low-density lipoprotein (VLDL), intermediate-density lipoprotein (IDL),
Nephrotic Syndrome in Pediatric Patients

and low-density lipoprotein (LDL) in response to hypoproteinemia

• Diagnostic criteria (must see both)
 o Serum albumin below 3 g/dL
 o Urine protein excretion greater than 50 mg/kg per day
 ▪ Or, greater than 3.5g of protein in a 24-hr urine sample

WORK-UP

• In the absence of identifiable systemic disease, the vast majority of patients that meet diagnostic criteria for nephrotic syndrome have minimal change disease and will be treated accordingly
• Other diagnostic tests, mostly aimed at identifying pathologic processes other than minimal change disease, include:
 o Urinalysis
 ▪ Hematuria can occasionally be seen in FSGS but is usually a sign of nephritic syndrome
 o Protein to creatinine ration from first void of morning
 ▪ UPr/Cr greater than 3.0 is consistent with nephrotic syndrome
 o Serum studies including electrolytes, creatinine, BUN, lipid panel, albumin, and complement levels
 ▪ Also, ANA for patients over ten years old, and hepatitis b/c and HIV testing
 o Renal biopsy if strong suspicion of pathology other than minimal change disease
• When to biopsy
 o Patients that meet all of the following criteria can be treated empirically without renal biopsy (other patients could benefit from biopsy):
 ▪ Between ages of 1 and 10
 ▪ None of the following present: hypertension, gross hematuria, elevated creatinine
 ▪ Normal complement levels

TREATMENT

• Prednisone 2 mg/kg per day for 4-6 weeks, followed by 1.5 mg/kg per day on alternating days for another 4-6 weeks
 o 95% of patients with MCD will go into remission following 8 weeks of corticosteroid treatment
 ▪ Remission defined as 3 consecutive days with no or trace protein on urinalysis
 ▪ Confirms diagnosis of MCD
 o Lower rates of remission seen in patients treated for 12 weeks instead of 8
Nephrotic Syndrome in Pediatric Patients

• If recurrent relapses despite adequate steroid therapy, consider cyclophosphamide, 2 mg/kg per day, for 8-12 weeks
• Cyclosporine can also be used instead of or following cyclophosphamide
• Loop diuretics, such as furosemide 2 mg/kg per day, can be used to treat fluid overload and edema
• Prophylactic penicillin can be used to prevent streptococcal or staphylococcal infection secondary to decreased complement levels
 o Pneumococcal vaccination should be given

COMPLICATIONS
• Acute renal failure
 o Usually reversible with restoration of intravascular volume
• Thrombosis
 o Secondary to urinary losses of antithrombin III and protein S
• Infection
 o Usually staphylococcal or streptococcal

PROGNOSIS
• For patients with minimal change pathology, prognosis is very good, with most patients going into remission following corticosteroid treatment
• For patients with focal-segmental glomerulosclerosis, prognosis is grave
 o Generally will progress to end-stage renal disease requiring dialysis and kidney transplant

References

4. UpToDate: Etiology, clinical manifestations, and diagnosis of nephrotic syndrome in children