Nutritional Supplements and Other Complementary Medicines for Infantile Colic: A Systematic Review
Rachel Perry, Katherine Hunt and Edzard Ernst

Pediatrics 2011;127;720; originally published online March 28, 2011;
DOI: 10.1542/peds.2010-2098

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://pediatrics.aappublications.org/content/127/4/720.full.html
Nutritional Supplements and Other Complementary Medicines for Infantile Colic: A Systematic Review

WHAT’S KNOWN ON THIS SUBJECT: Research into complementary and alternative medicines for infantile colic have suggested several therapies that can be beneficial, ranging from supplements to manipulation, sugar solutions, herbal extracts, massage, and reflexology.

WHAT THIS STUDY ADDS: This is the first systematic review of all complementary and alternative medicines and nutritional supplements for the treatment of infantile colic. Encouraging evidence for fennel extract, mixed herbal tea, and sugar solutions were found, but all included trials have limitations.

abstract

BACKGROUND: Complementary and alternative medicines often are advocated for infantile colic, yet there has been no synthesis of the evidence to inform current practice about their use.

OBJECTIVE: To critically evaluate all randomized clinical trials of nutritional supplements and other complementary and alternative medicines as a treatment for infantile colic.

METHODS: Five electronic databases were searched from their inception to February 2010 to identify all relevant randomized clinical trials of complementary and alternative medicines and supplements for infantile colic. Reference lists of retrieved articles were hand searched. Data were extracted by two independent reviewers, and methodological quality was assessed using the Jadad score and key aspects of the Cochrane risk of bias.

RESULTS: Fifteen randomized clinical trials met the inclusion criteria and were included. Thirteen studies were placebo controlled. Eight were of good methodological quality. Eleven trials indicated a significant result in favor of complementary and alternative medicines. However, none of these randomized clinical trials were without flaws. Independent replications were missing for most modalities.

CONCLUSIONS: Some encouraging results exist for fennel extract, mixed herbal tea, and sugar solutions, although it has to be stressed that all trials have major limitations. Thus, the notion that any form of complementary and alternative medicine is effective for infantile colic currently is not supported from the evidence from the included randomized clinical trials. Additional replications are needed before firm conclusions can be drawn. Pediatrics 2011;127:720–733

AUTHORS: Rachel Perry, MPhil, MA, BA, Katherine Hunt, PhD, MSc, RN, and Edzard Ernst, PhD, FMedSci, FSB, FRCP

Department of Complementary Medicine, Peninsula Medical School, Universities of Exeter and Plymouth, Plymouth, United Kingdom

KEY WORDS infantile colic, nutritional supplements, complementary medicine, RCT, systematic review

ABBREVIATIONS IC—infantile colic CAM—complementary and alternative medicine RCT—randomized clinical trial

Rachel Perry, Katherine Hunt, and Edzard Ernst made substantial contributions to the conception and design of this study, acquisition of data, and analysis and interpretation of data; were involved in drafting the article or revising it critically for important intellectual content; and gave final approval of the version to be published.

www.pediatrics.org/cgi/doi/10.1542/peds.2010-2098
doi:10.1542/peds.2010-2098

Accepted for publication Jan 5, 2011

Address correspondence to Rachel Perry, MPhil, MA, BA, Peninsula Medical School, Department of Complementary Medicine, 25 Victoria Park Rd, Devon, Exeter EX2 4NT UK. E-mail: rachel.perry@pms.ac.uk.

PEDIATRICS (ISSN Numbers: Print, 0031-4005; Online, 1098-4275).

Copyright © 2011 by the American Academy of Pediatrics

FINANCIAL DISCLOSURE: The authors have indicated that they have no personal financial relationships relevant to this article to disclose.
Infantile colic (IC) is characterized by excessive and inconsolable crying during the first 4 months of life and often is diagnosed using criteria set out by Wessel et al.\(^1\) It is prevalent (between 5% and 19% of infants in the United Kingdom)\(^2\) and usually difficult to treat. A paucity of treatment options and dissatisfaction with conventional health care may lead parents to seek out complementary and alternative medicine (CAM) options for their infants.\(^3\)

Given that IC can be particularly stressful for new parents and because there are few recommended conventional treatments, CAM use may be high in this population and therefore needs additional investigation to evaluate the effectiveness of these approaches and treatments. Advice and information regarding the treatment or management of IC is available to parents from a wide range of generally unregulated sources (eg, Web sites) that make claims that are not empirically supported.

The aim of this systematic review is to examine all relevant trials to provide an overview of currently available evidence relating to the effectiveness or efficacy of any form of CAM or nutritional supplement in reducing the symptoms of IC.

METHODS

The following databases were searched from their inception to February 2010: Medline and Embase via the Ovid interface, Cinahl and Amed via the Ebsco interface, and Central via the Cochrane library, using a combination of MeSH and key word terms (see the online Supplemental Information for electronic search strategy). No restrictions were applied regarding language or dates. Reference lists of all full-text articles were hand searched for additional studies. A protocol was produced and adhered to and is available on request from the lead author (Rachel Perry).

Study Selection

All titles and abstracts retrieved from the searches were assessed for eligibility. All articles that appeared to meet the inclusion criteria based on reading the abstract were retrieved in full and independently considered for inclusion by 2 reviewers (Rachel Perry and Katherine Hunt). Disagreements were resolved through discussion with the third author (Edzard Ernst). The following inclusion criteria were predefined:

- Randomized clinical trials (RCTs) of children diagnosed with infantile colic,
- RCTs of any form of CAM, including all supplements and probiotics;
- RCTs with placebo, no treatment, treatment as usual, or waiting lists as control groups; and
- RCTs with the following primary outcomes: improvement from baseline in subjective measures of colic severity (eg, crying diaries, duration, intensity, night wakings, and food diaries); improvement from baseline in parental self-report/observer-completed quality-of-life parameters; improvement from baseline in physiologic parameters; and a reduction from baseline in the need for medication or other treatment of hospitalization or adverse effects or events of treatment.

- Only completed RCTs that met these criteria were included (reports of ongoing trials were excluded). Data from included studies were extracted independently by 2 reviewers (Rachel Perry and Katherine Hunt), using a standardized form with predefined criteria. The proportion of participants achieving clinically significant reductions (defined by authors or using established cut offs) or significant differences in means and medians between groups in any of the above outcomes were reported. Disagreements between reviewers were resolved through discussions with the third author.

Quality Assessment

The methodological quality of all included RCTs was evaluated independently by 2 researchers (Rachel Perry and Katherine Hunt), using the Jadad score.\(^4\) Additional methodological quality data were extracted on the basis of recommendations from the Cochrane Handbook of Systematic Reviews of Interventions\(^5\) and the Jadad criteria for clinical trials on pain management.\(^6\)

Analysis

Results of each included study are displayed in Table 1. Between-group analyses of main outcome measures are presented. Secondary analysis was conducted if sufficient data were provided to perform a between-group analysis where the authors had not presented it. A meta-analysis of the primary data was not possible because the RCTs were insufficiently homogeneous.

RESULTS

The literature searches identified 1764 potentially relevant titles and abstracts. Fifteen RCTs with a total of 944 infants met our inclusion criteria (Fig 1). A summary of the main characteristics and results of these RCTs is presented in Table 1 and methodological quality is presented in Table 2. The studies were published between 1991 and 2008, originating from 10 countries. Fourteen studies were in English and 1 was in Danish.\(^7\) Sample sizes ranged from 9 to 175. Trials included infants aged between 0 and 16 weeks. Eight RCTs\(^8\)\(^–\)\(^14\)\(^,\)\(^15\)\(^\)\(^,\)\(^16\)\(^,\)\(^17\)\(^,\)\(^18\)\(^,\)\(^19\)\(^,\)\(^20\)\(^,\)\(^21\)\(^\) \) were of good methodological quality and scored 3 or more points on the Jadad scale (Table 2). Seven RCTs\(^10\)\(^,\)\(^15\)\(^–\)\(^18\)\(^,\)\(^20\)\(^,\)\(^21\)\(^\) had a score of 2 or fewer. However, most had...
<table>
<thead>
<tr>
<th>Supplement</th>
<th>Design</th>
<th>Sample Size</th>
<th>Intervention Schedule</th>
<th>Main Outcome Measures</th>
<th>Main Results (Between-Group Analysis)</th>
<th>Other Outcome Measures</th>
<th>Adverse Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Akcam, 2006, Turkey</td>
<td>Double blind, placebo-controlled, crossover trial (10 days washout)</td>
<td>30/30/25; Wessel diagnosis; mean age 9.1 weeks (5.9); 12 male and 13 female</td>
<td>4 days in intervention, 4 days in control, no follow-up, assessed at day 4 and day 8</td>
<td>Parental assessment rating scale (1–6); (2) clinical exam</td>
<td>(1) 64% versus 48% improvement in intervention condition (McNemar test (P = .031))</td>
<td>None</td>
<td>No adverse events/effects were noticed</td>
</tr>
<tr>
<td>Tree, 1991, United States</td>
<td>Double blind, placebo-controlled, crossover trial (1-day washout)</td>
<td>36/33/29 (phase 1) and 27 (phase 2); not Wessel diagnosis; median age 34 days (range: 10–54); 13 male and 14 female; not reported but all fed formula during baseline</td>
<td>6-day baseline measure; 9 days in intervention and 9 days in control; 30- to 35-day follow-up at the end; assessed at the start of baseline, during the intervention, during the control, at the end of the last 9-day period, and at 30–35 days follow-up</td>
<td>(1) Decision to stay with formula: 18 of 27 selected the intervention formula and 9 of 27 selected the control formula</td>
<td>No significant difference in time spent fussing and crying between conditions (Wilcoxon rank-sum tests)</td>
<td>Decision to stay with formula: 18 of 27 selected the intervention formula and 9 of 27 selected the control formula</td>
<td>Not reported</td>
</tr>
<tr>
<td>Markestad, 1997, Norway</td>
<td>Double blind, placebo-controlled, crossover trial (10 days washout)</td>
<td>20/19/19; Wessel diagnosis; mean age 7.3 weeks (3.4); 13 male and 6 female</td>
<td>3–4 d in intervention and 6–8 days in control; 3–4 days follow-up (telephone); assessed at the start, after each consultation, and at 3–4 days follow-up</td>
<td>Parental assessment rating scale (0–5); (2) clinical exam</td>
<td>(1) Significant reduction in colic symptoms in sucrose group compared with placebo (McNemar test (P < .01)); (2) not reported</td>
<td>Not reported</td>
<td>Not reported</td>
</tr>
<tr>
<td>Savino, 2007, Italy</td>
<td>Placebo-controlled, 2-arm trial</td>
<td>90/90 (45:45)/83 (41:42); median age at enrollment: intervention 31.0 weeks (range: 11–80); control: 31.5 weeks (range: 14–74); 44 male and 39 female</td>
<td>1 day baseline; 28 days intervention; no follow-up, assessed at baseline days 1, 7, 24, 21, and 28</td>
<td>Reduction in daily average crying time to <3 hours; (2) responders versus nonresponders</td>
<td>(1) Significant reduction in median crying time in intervention group compared with control (difference 95% confidence interval); day 14: intervention 95 (41–170), control 135 (51–231), (P = .001); day 28: intervention 51 (26–105), control 145 (70–191), (P = .02), not accounting for baseline median crying time</td>
<td>(2) 95% Responders in probiotic group versus 7% responders in the simethicone group ((P < .001), (\chi^2) test for proportions)</td>
<td>No adverse events/effects were noticed</td>
</tr>
<tr>
<td>First Author, Date, and Country of Origin</td>
<td>Design</td>
<td>Sample Size Recruited/Randomly Assigned/Analyzed (intervention:control); Diagnosis; Age in days or weeks; Gender; Percentage Breastfed</td>
<td>Intervention Schedule</td>
<td>Treatment Group</td>
<td>Control Group</td>
<td>Study Timeline Assessment Schedule</td>
<td>Main Outcome Measures</td>
</tr>
<tr>
<td>--</td>
<td>--------</td>
<td>---</td>
<td>----------------------</td>
<td>-----------------</td>
<td>--------------</td>
<td>-----------------------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Menthula, 2008, Finland</td>
<td>Double-blind, placebo-controlled, 2-arm trial</td>
<td>27/18/18 (9:9), we were only interested in colicky babies (5:4); Wessel diagnosis; mean age 3 weeks (range: 2–5); 3 male and 6 female</td>
<td>Capsules containing mixture of probiotic bacteria (L rhamnosus and P freudenreichii) with crystalline cellulose as a filling agent, suspended in water or breast milk 1 time per day for 2 weeks</td>
<td>Indistinguishable; placebo capsules of microcrystalline cellulose; suspended in water or breast milk 1 time per day for 2 weeks</td>
<td>1 day baseline; 14 days intervention; no follow-up, assessed at week 2 prior to baseline and during week 2</td>
<td>(1) Difference in total crying time; daily diary of sleeping, eating, and crying habits (type and duration)</td>
<td>No significant difference in total crying time between groups (inferential statistics not reported)</td>
</tr>
<tr>
<td>Herbal Weizman, 1993, Israel</td>
<td>Double-blind, placebo-controlled trial; 4 centers</td>
<td>77/72 (56:56)/88 (35: 35); Wessel diagnosis; Age range: 2–8 weeks; 26 male and 42 female; 67</td>
<td>Herbal tea (chamomile, vervain, licorice, fennel, and balm mint) with natural flavors with glucose and hot water. 150-mL dose given at every episode of colic for 7 days (no more than 3 times per day)</td>
<td>Indistinguishable placebo: natural flavors (smell and taste similar); glucose with hot water. 150-mL dose given at every episode of colic for 7 days (no more than 5 times per day)</td>
<td>7 days baseline; 7 days intervention; assessed at baseline, day 7, and day 14</td>
<td>(1) 5-point colic improvement scale; (2) elimination of colic; (3) number of night wakings (needing parental responses)</td>
<td>(1) Day 7: colic improvement score was significantly better in the herbal tea group: 1.7 (0.5) versus the placebo group: 0.7 (0.3), P < .05 (Wilcoxon for unpaired samples); (2) more infants in herbal tea group had elimination of colic than the placebo group: 19 of 33 (57%) versus 9 of 35 (26%), P < .01 (unpaired t-test and χ²); (3) no significant difference in night wakings reported</td>
</tr>
<tr>
<td>Alexandrovich, 2003, Russia</td>
<td>Double-blind, placebo-controlled; 2-arm; 2 centers</td>
<td>149/125 (65:60): 121; Wessel diagnosis; age range: 2–12 weeks, mean intervention 29.7 (8.2) and control 30.5 (6.9); 75</td>
<td>0.1% fennel seed oil emulsion with 0.4% polysorbate in water 5 mL to 20 mL 4 times per day orally before meals (limited to 12 mL/kg per day)</td>
<td>Indistinguishable placebo: 0.4% polysorbate in water 5 mL to 20 mL 4 times per day orally before meals (limited to 12 mL/kg per day)</td>
<td>7 days baseline; 7 days intervention; 7 days posttreatment follow up; assessed diary entries for 21 days</td>
<td>(1) Pediatric assessment; (2) parental diaries (all episodes of colic night wakings)</td>
<td>There was a significant improvement in colic symptoms in the fennel group compared with control: the use of fennel eliminated colic in 60% of the infants compared with 23.7% in control (Student t-test P < .01); There was a significant reduction in hours of crying per week in the fennel group compared with control. 8.8 (1.2) versus 12.3 (1.5) (Student t-test P < .01); significantly less emulsion consumed per day (mL) in the intervention group 48.9 (6.3) compared with control 52.5 (7.4), P < .05</td>
</tr>
<tr>
<td>First Author, Date, and Country of Origin</td>
<td>Design</td>
<td>Sample Size Recruited/Randomly Assigned/Analyzed (intervention:control); Diagnosis, Age in days or weeks; Gender; Percentage Breastfed</td>
<td>Intervention Schedule</td>
<td>Treatment Group</td>
<td>Control Group</td>
<td>Study Timeline Assessment Schedule</td>
<td>Main Outcome Measures</td>
</tr>
<tr>
<td>---</td>
<td>--------</td>
<td>---</td>
<td>----------------------</td>
<td>----------------</td>
<td>-------------</td>
<td>-----------------------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>Savino, 2005 Italy</td>
<td>Double-blind, placebo-controlled, 2-arm trial</td>
<td>93/93 (43.50:47.1); Wessel diagnosis, age range: 21–60 days, mean intervention 4.2 weeks (1.4) and control 4.4 weeks (1.6); 43 male and 50 female</td>
<td>Colimil: extract of Matricaria recutita (71.10 mg/kg per day), Foeniculum vulgare (65.71 mg/kg per day), and Melissa officinalis (38.75 mg/kg per day); 2 mL/kg per day 2 times per day between 5 and 8 PM before feeding for 7 consecutive days</td>
<td>Indistinguishable placebo (taste, color, smell, and packaging); containing RO water, fructose, pineapple flavor, citric acid, and sorbate potassium; 2 mL/kg per day 2 times per day between 5 and 8 PM before feeding for 7 consecutive days</td>
<td>7 days baseline; 7 days intervention; 7 days follow-up; assessed at days 1, 7, and 21</td>
<td>(1) Diaries monitoring: crying, when medications administered and side effects; (2) questionnaire about crying for duration of project on day 21; (3) “responders:” crying reduced by 50%</td>
<td>(1) Day 7: significant reduction in mean crying time in the Colimil group 76.9 minutes (23.5) versus 169.9 minutes (23.1) in placebo: (95% confidence interval: −102.89 to −83.11); (2) day 21: significant reduction in mean crying time in the Colimil group 82.1 minutes (19.8) versus placebo 165.3 minutes (20.7) (95% confidence interval: −91.82 to −74.58); not accounting for baseline measures</td>
</tr>
<tr>
<td>Massage Huhtala, 2000</td>
<td>No blinding; placebo-controlled, 2-arm trial</td>
<td>85/60/58 (28:30:52); Wessel diagnosis; age range: 23–48 days, mean intervention 39.5 (7.2) and control 37.3 (7.7); 32 male and 36 female</td>
<td>Infant massage: 5 times per day (2 times per day when baby is calm, 1 time belly massage when colicky); mothers trained by nurses and brochure</td>
<td>Placebo: crib vibrator (previously ineffective in colic study) 3 times per day for 25 min during colic or in advance of usual colicky episodes</td>
<td>1 week baseline; 3 weeks intervention; assessed at baseline, 1 week (telephone), and during the third-week visit</td>
<td>(1) Weekly diaries: 1 week prior to entry and for the 5 weeks of intervention; (2) rating scale of colicky symptoms; (3) rating scale of effect of intervention</td>
<td>At 4 weeks: (1) no significant difference in colicky crying (48% in massage versus 47% in vibrator), $P = .87$; At 3 weeks: (2) no significant difference in colicky symptoms (64% in massage versus 52% in vibrator); (3) no significant difference in parental evaluation of effectiveness of intervention between groups</td>
</tr>
<tr>
<td>Reflexology Bennedebak, 2001 Denmark</td>
<td>2 placebo-controlled interventions versus TAU; 3 arms</td>
<td>63/50/28 (8:10:10); No Wessel diagnosis; aged 1–3 months; gender not reported; breastfeeding not reported</td>
<td>Group B (targeted reflexology): 20-min sessions (4 days) over a 2-week period</td>
<td>Indistinguishable placebo (Group A (nontargeted reflexology): 20-min sessions (4 days) over a 2-week period, Group C: control (TAU))</td>
<td>2 days baseline; 14 days intervention; assessed at baseline and final Q</td>
<td>(1) Questionnaire; (2) journal 3 times per day: crying, bowel habits, and sleep patterns; drop-out form</td>
<td>No significant difference between Groups A and B; control group none were cured; Group A and B: half the sample was cured; Group B: did significantly better than Group C in terms of reduction in crying hours; all data not presented</td>
</tr>
</tbody>
</table>
TABLE 1 Continued

<table>
<thead>
<tr>
<th>First Author, Date, and Country of Origin</th>
<th>Design</th>
<th>Sample Size</th>
<th>Source of Sample</th>
<th>Treatment Schedule</th>
<th>Control Schedule</th>
<th>Study Timeline</th>
<th>Main Outcome Measures</th>
<th>Main Results (Between Group Analysis)</th>
<th>Other Outcome Measures</th>
<th>Adverse Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wiberg, 1999, Denmark</td>
<td>No blinding; prospective RCT; placebo controlled; open trial</td>
<td>57/50 (25:25)/45 analyzed (25:20), dropped further to 41; no Wessel diagnosis; inclusion age range: 2–10 weeks; mean intervention 4.9 (0.5) and control 5.9 (0.7); 25 male and 20 female; breastfeeding not reported</td>
<td>Chiropractic manipulation (5–6 treatments) over 12–15 days plus counseling</td>
<td>Placebo: Dimethicone daily for 12–15 days plus counseling</td>
<td>4 days baseline; 12–15 days treatment; assessed at end of weeks 1 and 2</td>
<td>(1) Colic diary: (a) periods of awake/sleep/crying, (b) bowel movements, (c) feeding patterns, (main outcome percentage change); (2) structured diagnostic interview (IC behavior profile) measuring parents subjective evaluation of severity</td>
<td>Changes in colic (hours per day crying); days 4–7: significant reduction in crying in the Dimethicone group — 1.0 (0.6) versus manipulation — 2.4 (0.4), P = .04 (change score unpaired t test); days 8–11: significant reduction crying time in the Dimethicone group — 1.0 (0.4) versus manipulation — 2.7 (0.3), P = .004 change score unpaired t-test, after day 12 missing records precluded analysis</td>
<td></td>
<td>Not directly reported but worsening of colic symptoms in control group</td>
<td></td>
</tr>
<tr>
<td>Mercer, 1999, New Zealand</td>
<td>Single-blind, placebo-controlled</td>
<td>30 infants with colic (15:15); diagnosis not reported; age range: 0–8 weeks; gender not reported; breastfeeding not reported</td>
<td>Chiropractic spinal manipulation, maximum of 6 treatments over 2 weeks</td>
<td>Placebo: nonfunctional, detuned ultrasound machine, 6 treatments over 2 weeks</td>
<td>Baseline; 2 weeks intervention; 1 month follow-up, assessed at baseline, at each consultation, and at 1 month follow-up</td>
<td>Mann-Whitney U test: 93% complete resolution of symptoms in spinal manipulation group (plus no reoccurrence of colic at 1 month)</td>
<td>Parental questionnaires</td>
<td></td>
<td>Not reported</td>
<td></td>
</tr>
<tr>
<td>Olafsdottir, 2001, Norway</td>
<td>Double-blind, placebo-controlled; 2-arm trial</td>
<td>100/91/86 (46:40); Wessel diagnosis; age range: 3–9 weeks; 47 male and 30 female; breastfeeding not reported</td>
<td>Chiropractic manipulation for 10 min 3 times in 8 days</td>
<td>Placebo: held by nurse for 10 min 3 times in 8 days</td>
<td>2 days baseline; 8 days intervention; 14 days follow-up, assessed with a clinical exam at each visit, every 2–5 days of the intervention, and at 8–14 days follow-up (telephone)</td>
<td>(1) Observation scale (1–5); (2) crying diaries; (3) clinical assessment</td>
<td>(1) Main outcome at day 8: intention-to-treat sample: no significant difference between groups on parent report (Mann-Whitney U test P = .861); Fischer’s test P = .856; (2) no significant difference in crying (diaries), intervention (69.9%) versus control (60.0%) improved but no significant difference between groups based on the t test (P = .982); no follow-up analysis presented</td>
<td></td>
<td>Not reported</td>
<td></td>
</tr>
</tbody>
</table>
All infants in the treatment group showed improvement, but only 2 of 14 in the control group; no inferential statistics were reported.

Massage, Fennel Tea, and Sucrose Solution

Hayden, 2006
- United Kingdom
- 44/28 (14:14) dropped to 26 (14:12)
- Wessel diagnosis; mean age: intervention 46.4 days (5.4) and control 45.5 days (5.0) (range: 10–83); 22 male and 6 female
- Cranial osteopathy (individualized 1 time per week for 4 weeks); received cranial osteopathic treatment until palpable release of tensions and dysfunction achieved; first session was 1 hour then 430min sessions
- No treatment
- Baseline: 4 weeks intervention; no follow-up assessed at the clinical exam at baseline and 1, 2, 3, and 4 weeks (plus daily diary)
- (1) Diaries: number of hours per day spent colicky crying and number of hours per day spent sleeping; (2) questionnaire about birth details, sleeping, and feeding patterns
- Between weeks 1 and 4: (1) a significant reduction in mean crying time in the treated group compared with the nontreated group: 1.0 hours per day (95% confidence interval: 0.14–2.19) (2-sample t test, P ≤ .02); (2) a significant increase in mean sleeping time in the treated group compared with the nontreated group: 1.17 hours per day (95% confidence interval: 0.29–2.27) (2-sample t test, P ≤ .05)
- No treatment Baseline; 4 weeks intervention; no follow-up; assessed at the clinical exam at baseline and 1, 2, 3, and 4 weeks (plus daily diary)
- All infants in the treatment group showed improvement, but only 2 of 14 in the control group; no inferential statistics were reported.

Massage, Fennel Tea, and Sucrose Solution

Arikan, 2009
- Turkey
- 187/175 (35:35:35:35:35:35:35:35); N = 140
- Wessel diagnosis; mean age: massage group 2.29 weeks (79); sucrose group 2.24 weeks (69); herbal tea group 2.24 weeks (69); control group 2.28 weeks (61); 97 male and 78 female
- (1) Infant massage (CBM): 2 times per day for 25 min during colic symptoms; (2) sucrose supplement: 2 mL of 12% sucrose solution 2 times per day between 5 PM and 8 PM; (3) herbal tea (fennel): 35 mL 3 times per day (maximum 150 mL)
- No treatment
- 1 week baseline; 1 week intervention; no follow-up; assessed at 1 week baseline (diary) and 1 week intervention (daily diary)
- (1) Baseline questionnaire: behavior, temperament, sleeping, eating, and history of colic; (2) crying diary
- Significant reduction in all treatment groups compared with the control group (using the Dunnet multiple-comparison test); massage versus control: 0.88 (0.28) (P ≤ .001); sucrose versus control: 1.68 (0.28) (P ≤ .001); herbal tea versus control: 1.82 (0.28) (P ≤ .001)
- No blinding, open-controlled, 5-arm open trial
- Not reported: additional source of bias. Equivalent between groups, which is an additional source of bias. Variation in the information given each trial a result of differences in the availability of the data.

TABLE 1 Continued

<table>
<thead>
<tr>
<th>First Author, Date, Country of Origin</th>
<th>Design</th>
<th>Sample Size</th>
<th>Recruited/Randomly Assigned/Analyzed (intervention:control)</th>
<th>Treatment Group</th>
<th>Control Group</th>
<th>Study Timeline Assessment Schedule</th>
<th>Main Outcome Measures</th>
<th>Main Results (Between-Group Analysis)</th>
<th>Other Outcome Measures</th>
<th>Adverse Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hayden, 2006**</td>
<td>No blinding, open-controlled, 2-arm trial</td>
<td>44/28 (14:14) dropped to 26 (14:12)</td>
<td>Wessel diagnosis; mean age: intervention 46.4 days (5.4) and control 45.5 days (5.0) (range: 10–83); 22 male and 6 female</td>
<td>Cranial osteopathy (individualized 1 time per week for 4 weeks); received cranial osteopathic treatment until palpable release of tensions and dysfunction achieved; first session was 1 hour then 430min sessions</td>
<td>No treatment</td>
<td>Baseline: 4 weeks intervention; no follow-up assessed at the clinical exam at baseline and 1, 2, 3, and 4 weeks (plus daily diary)</td>
<td>(1) Diaries: number of hours per day spent colicky crying and number of hours per day spent sleeping; (2) questionnaire about birth details, sleeping, and feeding patterns</td>
<td>Between weeks 1 and 4: (1) a significant reduction in mean crying time in the treated group compared with the nontreated group: 1.0 hours per day (95% confidence interval: 0.14–2.19) (2-sample t test, P ≤ .02); (2) a significant increase in mean sleeping time in the treated group compared with the nontreated group: 1.17 hours per day (95% confidence interval: 0.29–2.27) (2-sample t test, P ≤ .05)</td>
<td>No treatment Baseline; 4 weeks intervention; no follow-up; assessed at the clinical exam at baseline and 1, 2, 3, and 4 weeks (plus daily diary)</td>
<td>All infants in the treatment group showed improvement, but only 2 of 14 in the control group; no inferential statistics were reported.</td>
</tr>
<tr>
<td>Arikan, 2009**</td>
<td>No blinding, open-controlled, 5-arm open trial</td>
<td>187/175 (35:35:35:35:35:35:35:35:35:35); N = 140</td>
<td>Wessel diagnosis; mean age: massage group 2.29 weeks (79); sucrose group 2.24 weeks (69); herbal tea group 2.24 weeks (69); control group 2.28 weeks (61); 97 male and 78 female</td>
<td>(1) Infant massage (CBM): 2 times per day for 25 min during colic symptoms; (2) sucrose supplement: 2 mL of 12% sucrose solution 2 times per day between 5 PM and 8 PM; (3) herbal tea (fennel): 35 mL 3 times per day (maximum 150 mL)</td>
<td>No treatment</td>
<td>1 week baseline; 1 week intervention; no follow-up; assessed at 1 week baseline (diary) and 1 week intervention (daily diary)</td>
<td>(1) Baseline questionnaire: behavior, temperament, sleeping, eating, and history of colic; (2) crying diary</td>
<td>Significant reduction in all treatment groups compared with the control group (using the Dunnet multiple-comparison test); massage versus control: 0.88 (0.28) (P ≤ .001); sucrose versus control: 1.68 (0.28) (P ≤ .001); herbal tea versus control: 1.82 (0.28) (P ≤ .001)</td>
<td>No blinding, open-controlled, 5-arm open trial</td>
<td>Not reported: additional source of bias. Equivalent between groups, which is an additional source of bias. Variation in the information given each trial a result of differences in the availability of the data.</td>
</tr>
</tbody>
</table>
on the randomization procedure or whether treatment allocation was concealed, and it was not clear whether groups were similar at baseline on prognostic indicators. Although the study is described as a single-blind study, it is not explicitly stated that parents were actually blinded to treatment. Numbers of dropouts and reasons for dropping out were not reported, and it was unclear whether there was a difference in the number of actual sessions between the groups because it just states up to 6 sessions. In general, this trial was of poor methodological quality (Jadad 1), was very briefly outlined, and had too much missing information to enable replication.

Hayden and Mullinger20 conducted a pragmatic trial looking at the impact of cranial osteopathy compared with no treatment for colic. Results indicated a significant reduction in crying ($P < .02$) and a significantly greater increase in sleeping time ($P < .05$) in the intervention group compared with the control group. The control group received no treatment, just therapeutic time, thus the parents were not blinded. Given that parents reported on treatment effectiveness, blinding to the results is essential to reduce the effect of demand characteristics or the Hawthorne effect. Failure to blind parents to the results may therefore have increased the risk of bias and reduced the validity and reliability of the results.

A final study of chiropractic treatment15 showed no differences in outcome according to parent’s reports or hours of crying recorded in the diaries in both the intention-to-treat and per-protocol analyses. All parties were blinded to the results except the chiropractor. The parents/outcome assessors were unlikely to be aware of treatment conditions because a nurse took the infant to a closed room where they were either manipulated by a chiropractor or held by a nurse (controlling for any nonspecific effects [e.g., touch by a stranger]). However, it does leave the question of whether the nurse would unconsciously transmit the group allocation. Overall, this is the most reliable study on manipulation.

Herbal Studies

Three studies on herbal supplements were reviewed, and all 3 reported significant results. One well-conducted study13 (Jaded 5) reported a significant improvement in colic symptoms in infants given fennel extract compared with placebo ($P < .01$). In another trial12 herbal tea (containing chamomile, vervain, licorice, fennel, and balm-mint) significantly improved the colic score ($P < .05$) and resulted in a greater elimination of colic symptoms ($P < .01$) than placebo. However, although both these trials used large samples ($n = 125$ and $n = 72$, respectively), neither reported a power calculation nor conducted intention-to-treat analyses, which somewhat reduces the robustness of the findings.

Savino et al14 compared Colimil (a herbal formula containing fennel, lemon balm, and German chamomile) to an indistinguishable placebo. There was a significant difference in crying times per day at the end of the trial and at the 15-day follow-up, with a greater reduction in crying in the Colimil group compared with the control group. The statistical methodology stated that an analysis of variance was used, yet independent t tests were reported, therefore not accounting for baseline crying time (although this might be because no between-group differences

FIGURE 1

Flowchart showing the process for the inclusion of randomized controlled trials.
TABLE 2 Methodological Quality of Trials

<table>
<thead>
<tr>
<th>First Author, Date</th>
<th>Was the Treatment Allocation Randomly Assigned?</th>
<th>Was the Randomization Procedure Described and Was It Appropriate?</th>
<th>Were Groups Similar At Baseline on Prognostic Indicators?</th>
<th>Who Was Blinded?</th>
<th>Was the Method of Blinding Described and Appropriate?</th>
<th>Was the Number of Withdrawals/ Dropouts in Each Group Mentioned?</th>
<th>In Addition, Were Reasons Given for Each Group?</th>
<th>Was Analysis Conducted on the Intent-to-Treat Group?</th>
<th>Was an A Priori Power Calculation Described?</th>
<th>Were Comorbidities Avoided/Controlled For?</th>
<th>Was the Therapeutic Time Equivalent Between Groups?</th>
<th>Jadad Score, Maximum Score = 5</th>
<th>Where Relevant, How Many Items in Section 4 of the Herbal-Specific CONSORT Statement Were Described Fully and Partly (F/P)?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Akcam, 2006</td>
<td>Yes</td>
<td>Not described</td>
<td>Unclear</td>
<td>Yes 1f</td>
<td>Parents/clinical observers blinded, parents blinded</td>
<td>Outcome assessed or not reported</td>
<td>Parents blinded, outcome assessed or not reported</td>
<td>NA</td>
<td>No</td>
<td>Yes (excluded at baseline)</td>
<td>Yes</td>
<td>Unclear</td>
<td>3 2/3</td>
</tr>
<tr>
<td>Treem (1991)</td>
<td>Yes</td>
<td>Not described</td>
<td>Not reported</td>
<td>Yes 1b</td>
<td>Parents blinded</td>
<td>No dropouts</td>
<td>Yes by group/no drop outs</td>
<td>Yes by group</td>
<td>Yes</td>
<td>No (excluded at baseline)</td>
<td>Yes</td>
<td>No</td>
<td>4</td>
</tr>
<tr>
<td>Markstad (1997)</td>
<td>Yes</td>
<td>Not described</td>
<td>Unclear</td>
<td>Yes 1b</td>
<td>Parents blinded</td>
<td>Yes by group/indistinguishable placebo</td>
<td>Yes by group/indistinguishable placebo</td>
<td>Yes</td>
<td>No</td>
<td>Yes (excluded at baseline)</td>
<td>Yes</td>
<td>Yes</td>
<td>4</td>
</tr>
<tr>
<td>Savino (2005)</td>
<td>Yes</td>
<td>Yes</td>
<td>Unclear</td>
<td>No</td>
<td>—</td>
<td>NA</td>
<td>No</td>
<td>Yes</td>
<td>No (excluded at baseline)</td>
<td>Yes</td>
<td>Yes</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Menthula (2008)</td>
<td>Yes</td>
<td>Not described</td>
<td>Not reported</td>
<td>No</td>
<td>—</td>
<td>Yes by group/indistinguishable placebo</td>
<td>Yes by group/indistinguishable placebo</td>
<td>Yes</td>
<td>No</td>
<td>Yes (excluded at baseline)</td>
<td>Yes</td>
<td>Yes</td>
<td>3</td>
</tr>
<tr>
<td>Herbal Extracts</td>
<td>Yes</td>
<td>Not described</td>
<td>Not reported</td>
<td>Yes</td>
<td>Yes by group/indistinguishable placebo</td>
<td>No dropouts</td>
<td>Yes by group/indistinguishable placebo</td>
<td>Yes</td>
<td>No</td>
<td>Yes (excluded at baseline)</td>
<td>Yes</td>
<td>Yes</td>
<td>4 2/3</td>
</tr>
<tr>
<td>Alexandrovich (2003)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes by group/indistinguishable placebo</td>
<td>No dropouts</td>
<td>Yes by group/indistinguishable placebo</td>
<td>Yes</td>
<td>No</td>
<td>Yes (excluded at baseline)</td>
<td>Yes</td>
<td>Yes</td>
<td>5 3/2</td>
</tr>
<tr>
<td>Savino (2005)</td>
<td>Yes</td>
<td>Not described</td>
<td>Not reported</td>
<td>Yes</td>
<td>Yes by group/indistinguishable placebo</td>
<td>No dropouts</td>
<td>Yes by group/indistinguishable placebo</td>
<td>Yes</td>
<td>No</td>
<td>Yes (excluded at baseline)</td>
<td>Yes</td>
<td>Yes</td>
<td>3 3/3</td>
</tr>
<tr>
<td>Massage</td>
<td>Yes</td>
<td>Not described</td>
<td>Not reported</td>
<td>No</td>
<td>—</td>
<td>Yes by group/indistinguishable placebo</td>
<td>Yes by group/indistinguishable placebo</td>
<td>Yes</td>
<td>No (boot hoc)</td>
<td>Yes (excluded at baseline)</td>
<td>Yes</td>
<td>Yes</td>
<td>2</td>
</tr>
<tr>
<td>Reflexology</td>
<td>Yes</td>
<td>Not reported</td>
<td>Not reported</td>
<td>No</td>
<td>No</td>
<td>Yes by group/indistinguishable placebo</td>
<td>Yes by group/indistinguishable placebo</td>
<td>Yes</td>
<td>No</td>
<td>Yes (excluded at baseline)</td>
<td>Yes</td>
<td>Yes</td>
<td>2</td>
</tr>
<tr>
<td>First Author, Date</td>
<td>Was the Treatment Allocation Randomly Assigned?</td>
<td>Was the Randomization Procedure Described and Was It Appropriate?</td>
<td>Were Groups Similar At Baseline on Prognostic Indicators?</td>
<td>Who Was Blinded?</td>
<td>Was the Method of Blinding Described and Appropriate?</td>
<td>Was the Number of Withdrawals/ Dropouts in Each Group Mentioned?</td>
<td>In Addition, Were Reasons Given for Each Group?</td>
<td>Was Analysis Conducted on the Intent-to-Treat Group?</td>
<td>Was an A Priori Power Calculation Described?</td>
<td>Were Comorbidities Avoided/Controlled For?</td>
<td>Was the Therapeutic Time Equivalent Between Group?</td>
<td>Jadad Score, Maximum Score 5</td>
<td>Where Relevant, How Many Items in Section 4 of the Herbal-Specific CONSORT Statement Were Described Fully and Partly (F/P)?</td>
</tr>
<tr>
<td>-------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>------------------</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>----------------------------------</td>
<td>-----------------------------</td>
<td>---------------------------------</td>
<td>--</td>
<td>-----------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Manipulation</td>
<td></td>
</tr>
<tr>
<td>Wiberg (1999)17</td>
<td>Yes</td>
<td>Not described in enough detail; not described</td>
<td>Not reported</td>
<td>No</td>
<td>No (single blind)</td>
<td>—</td>
<td>Yes by group/No</td>
<td>Yes by group/No</td>
<td>No</td>
<td>No</td>
<td>Yes (excluded at baseline)/not reported</td>
<td>No</td>
<td>1</td>
</tr>
<tr>
<td>Mercer (1999)18</td>
<td>Yes</td>
<td>Not described</td>
<td>Not reported</td>
<td>Not reported</td>
<td>Not explicit that parents were blinded; parents/pediatrician/researcher</td>
<td>—</td>
<td>Not by group</td>
<td>Not by group</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Unclear1</td>
<td>1</td>
</tr>
<tr>
<td>Olafsdottir (2001)19</td>
<td>Yes</td>
<td>Yes</td>
<td>Unclear4</td>
<td>Yes</td>
<td>Chiropractor and nurse not blinded; no one (open trial)</td>
<td>No</td>
<td>Yes by group</td>
<td>Yes by group/No</td>
<td>Yes</td>
<td>No</td>
<td>(excluded at baseline)</td>
<td>Yes</td>
<td>3</td>
</tr>
<tr>
<td>Hayden (2006)20</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td></td>
<td>Chiropractor and nurse not blinded; no one (open trial)</td>
<td>—</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>(excluded at baseline)</td>
<td>Yes</td>
<td>2</td>
</tr>
<tr>
<td>Massage, Fennel Tea, and Sucrose Solution</td>
<td>Yes</td>
<td>Not described</td>
<td>Not reported</td>
<td>Not clear1</td>
<td>Parents not blinded, pediatrician and researcher not reported</td>
<td>No</td>
<td>—</td>
<td>No dropouts</td>
<td>No</td>
<td>Yes</td>
<td>(excluded at baseline)</td>
<td>No</td>
<td>1, 1</td>
</tr>
</tbody>
</table>

* Used sealed envelopes but did not state if they were opaque.
* Same participants (crossover trial).
* Pharmacist was the only 1 aware of coding.
* Pharmacy controlled.
* As a result of no dropouts.
* Therapeutic time was difficult to achieve because of the different dosage requirements of the 2 treatments.
* A slight difference in the number of hours of treatment, but no test of difference was carried out.
* Unclear from translation.
* Up to 6 sessions.
* Not described as double blind but parent and outcome assessor were both blinded.
* Randomization of the breast-fed group only included here.
* Colic severity was not mentioned.
were found in crying time at baseline). Savino et al also reported a significant reduction in crying time between “responders” and “nonresponders” (85.4% in the Colimil group vs 48.9% in the control group; \(P < .005 \)). Responders were defined as infants who had a 50% reduction in crying time at the end of treatment; however, this was a subgroup of the original sample, so sample sizes were small and there is no control over bias in these cases. There also is some confusion regarding adverse effects; the authors reported no adverse effects yet they present a table of side effects (eg, vomiting, sleepiness, constipation, loss of appetite, and cutaneous reactions).

Glucose and Sucrose Studies

Five studies on supplements were found. Akçam and Yilmaz\(^8\) and Markestad\(^10\) tested glucose and sucrose supplementation, respectively. Akçam and Yilmaz\(^8\) replicated Markestad’s\(^10\) design but investigated glucose rather than sucrose, describing it as a safer treatment.\(^8\) Both found significant effects of the intervention compared with placebo (McNemar test: \(P = .031 \) and \(P < .01 \)). However, the McNemar matched-pairs test (which is performed on dichotomous data) was used on continuous variables and an explanation of cut offs used to dichotomize the variables was not provided in either trial. Given that a test designed for continuous data would have been more appropriate for both these trials, there is the possibility that selective reporting took place. Markestad\(^10\) had higher methodological quality than the other trials (Jadad 4), but a lack of washout between the conditions made it impossible to ascertain which treatment induced the effect in 5 infants. Despite using an identical placebo in both trials, and despite the parents claiming that they did not taste the difference between the solutions, it was still possible to do so, which could have then affected the subjective rating of colic severity.

Probiotics Studies

Savino et al\(^16\) found a significant reduction in median crying time in the probiotic condition compared with the control group at day 7 (\(P < .005 \)) and up to day 28 (\(P < .001 \)). Although this analysis did not account for baseline interactions, mean crying time was exactly the same in both groups at baseline. Using the same criteria to define “response to treatment” used in the other Savino et al trial,\(^14\) the authors reported that 95% of infants in the probiotic group responded to treatment compared with only 7% in the simethicone group. This is pertinent given that simethicone is considered the best available and most commonly prescribed treatment for colic, although it previously has been shown to be no more effective than the placebo.\(^22,23\) Despite some poor reporting of results, and the fact that the trial could not be conducted in a blinded manner because of the different dosage and administration requirements of the 2 solutions, this was the only trial to control for the confounding effect of the mother’s diet. Moreover, this was 1 of only 2 trials that reported a power calculation\(^9,11\); but given that the authors recruited beyond the required sample size (doubling the required numbers in each group), it may be fair to assume that a post hoc calculation was conducted. Treem et al’s\(^9\) results indicate that although a soy-enriched formula did not significantly improve the effects of colic, the parents were happier (67%) using the intervention formula than the control formula (53%). Unfortunately, only a 1-day washout period was used, which may have impacted on the results. Menthula et al’s\(^11\) study used both colicky and noncolicky infants randomly assigned to probiotic capsules or an indistinguishable placebo, and although we were only interested in the colicky sample, at times it was difficult to separate the analyses. Colicky cry decreased more in the placebo group yet was more marked at baseline (significance level not reported). The sample size was very small (\(n = 9 \)); therefore, it was difficult to extrapolate from these findings, but the results showed no significant difference in reduction of total crying times between groups. In both these trials,\(^8,12\) the statistical test was not reported.

Massage Studies

In 1 study of massage,\(^15\) massage therapy was compared with a mechanical crib vibrator so that the therapeutic effects of touch were not controlled for (although the parents were led to believe that the crib vibrator was of equal value to massage). However, the crib vibrator group had significantly more colicky crying at baseline (\(P = .021 \)), which may have impacted on the results. Results showed no significant differences between groups in terms of a decrease in crying or colicky symptoms. Interestingly, 93% of parents in both groups reported a decrease in colic symptoms over the duration of the trial, but this is contradicted by the fact that 21% of the massage group and 30% of the crib-vibrator group reported no given effect of treatment, which may suggest that a reduction in colic severity was associated with the natural course of the condition rather than either intervention.

Reflexology Studies

The reflexology trial\(^7\) used less stringent IC diagnostic entry criteria than the other trials but examined and removed infants with other medical problems before they were randomly assigned. There were 2 reflexology groups (nonspecific reflexology, [A
group] and colic-specific reflexology [B group] versus a treatment-as-usual control (C group). The nonspecific reflexology did not target the areas of the feet considered to be therapeutic for colic, whereas the colic-specific reflexology targeted the spine, digestion, colon, spleen, lungs, urinary tract, solar plexus, and endocrine points. The findings show a significant difference between group B and the control but no significant difference between the 2 treatment groups (A and B). This implies that targeted reflexology is no better than non-targeted reflexology in the treatment of IC; any improvement in colic found in the 2 treatment groups compared with the control group may have more to do with the therapeutic effect of touch than the actual therapy itself. However, with a small sample size (n = 28) and no power calculation, it is difficult to establish the true magnitude of the results, particularly given the absence of inferential statistical analyses.

Massage, Fennel Tea, and Sucrose Solution Studies

Another study21 investigated the effectiveness of four different interventions versus control. Because we were only interested in the 3 CAM therapies (massage, sucrose solution, and fennel tea), the results from the hydrolyzed formula group are not reported here. Results indicated a significant difference between all groups and the control group (mass; $P < .01$; sucrose solution and [fennel] tea; $P < .001$). A large sample was recruited to these 4 groups (n = 140), although no power calculation was reported. For consistency, the same nurse and pediatrician were involved in each intervention and replicated methodologies and treatment protocols from previous studies, where possible. Unfortunately, the treatment duration and follow-up period were short (reducing the likelihood of identifying side effects), and there was no matching of therapeutic time for the control group. However, this was the only trial that accounted for the mother’s anxiety levels, excluding those with high anxiety before entry.

DISCUSSION

Our review included 15 RCTs of 5 different CAM modalities. Most studies were flawed, reducing the robustness of their findings. The most promising results emerged for fennel extract, herbal tea (containing chamomile, vervain, licorice, fennel, and balm mint), and sucrose and glucose solutions. However, independent replications are missing for all tea extracts except fennel, and there has been no replication of the glucose solution. Thus, only fennel extraction and sucrose solution are supported by positive evidence from more than 1 RCT.

The majority of the included trials in this review eschewed safety issues by not mentioning adverse effects and not providing reasons for subjects dropping out. This is a frequent phenomenon in CAM research, and there is a common misconception that natural means safe.24 Researchers investigating botanical products should comply with the Consolidated Standards of Reporting Trials (CONSORT) guidelines for the reporting of herbal products.25 None of the included trials of herbal products12–14,21 provided information that met more than 6 of 15 CONSORT statement criteria regarding the extraction and preparation of herbs.25 Future trials also would benefit from adopting good trial design and stringent reporting to enable replication. This would include adopting a randomized design with allocation concealment, being triple blind (if possible), and having indistinguishable placebos. All withdrawals, dropouts, and adverse events should be fully reported, giving number and reason by group.

Intention-to-treat analyses and a priori power calculations should be conducted. Given that funding for CAM research is difficult to obtain and our review did not identify convincing evidence for the use of manual therapies (chiropractic, massage) and probiotics, additional research should focus on the treatments that offer more robust evidence.

IC is a condition that is far from easy to treat. Current conventional treatments fall into 1 of the following 4 categories: dietary, physical, behavioral, and pharmacological. With little evidence to favor the first 3 approaches, there is some evidence that the drug dicyclomine hydrochloride can be effective, although its safety came into question after reports of severe side effects occurring in ~5% of infants,26 and in some extreme cases it has been linked to infant death.27

The difficulty in finding an effective treatment is related to our lack of understanding of IC. Its pathophysiology is unclear; food allergies, formula intolerance, immaturity of gastrointestinal tract, excessive gas formation, or intestinal cramping have all been suggested as possible etiologies.13 Arguably, any rational treatment should be directed at the mechanisms of the disease itself.

Indeed, animal studies28 have demonstrated that fennel may have an intestinal antispasmodic effect and might increase small-intestine motility. Some researchers have claimed that volatile oil extracted from fennel is particularly effective in relieving colic symptoms.13 The reason for using sucrose in IC is based on research demonstrating an analgesic effect in newborn infants undergoing heel-prick tests.29,30 The mechanism by which this occurs is unknown, although it has been postulated that its sweetness has the analgesic effect or that it induces a physiologic effect to the structure of

\[\text{PEDIATRICS Volume 127, Number 4, April 2011} \]

\[\text{Downloaded from pediatrics.aappublications.org by guest on May 2, 2013} \]

\[731 \]
ing IC so that effective treatments can be developed. This review has several limitations. Although the search strategy was thorough, some clinical trials may not have been identified. However, our systematic and detailed search strategy should have assisted in identifying all trials and in reducing bias. Nevertheless, publication bias is a problem in all medical research, and it is particularly problematic in alternative medicine. Other limitations are the paucity and often poor quality of the primary studies. Collectively, these limitations render our review less than conclusive.

CONCLUSIONS

Few RCTs of CAM for IC are available, and many have methodological problems that limit the potential to draw reliable conclusions about the efficacy of CAM and supplements for IC. Although some encouraging results exist for fennel extract, mixed herbal tea, and sugar solutions, design flaws and the absence of independent replications preclude practice recommendations. The evidence for probiotic supplements and manual therapies does not indicate an effect. Thus, the notion that any form of CAM is effective for infantile colic is currently not supported from the evidence from the included RCTs. Additional research into this prevalent, and often difficult to treat, condition seems warranted.

ACKNOWLEDGMENTS

This work was supported by a grant from The Laing Foundation. We thank Leala Watson for assistance in searching and administrative duties, Barbara Fountain for translating the Danish article, and Shao Kang Hung for verifying the CONSORT checklist.

REFERENCES

19. Mercer C, Nook B. The efficacy of chiropractic spinal adjustments as a treatment pro-

ALARM FATIGUE: A few days ago, I was seeing a hospitalized patient of mine. While I was talking to her and her mother, the oxygen saturation and cardiopulmonary monitoring alarms went off several times. As she was not in distress and acyanotic, I eventually silenced the alarms so I could continue my interview and examination. It would appear that I am not alone in ignoring alarms. Fortunately, however, my patient did not suffer any ill consequences because of my actions. According to an article in The Boston Globe (February 13, 2011: Lifestyle), patient alarms often go unheeded. Part of the problem is that the nursing staff may be experiencing alarm fatigue. Patients are attached to many different monitoring devices which sound all kinds of alarms, from quieter low level alerts to louder and more piercing critical illness alerts. Nurses are constantly addressing one alarm after another. In one 15 bed hospital unit, the staff documented 942 alarms a day. Over time, nurses can become desensitized. Moreover, most alarms are false. According to the article, in one hospital emergency room, 99.4 percent of alarms were false and for patients with chest pain, less than 1 percent of alarms necessitated a change in patient care. In another study in an intensive care unit, 43 percent of crisis alarms were false. Device manufacturers have an interest in making sure the monitors are sensitive rather than specific to avoid missing a potential devastating problem. With alarms sometimes becoming just background noise, bad outcomes are bound to occur. An investigation by The Boston Globe revealed that between 2005 and 2010, more than 200 deaths were linked to alarms. Most of the time, the problem was not that the alarm did not go off but that the alarm had been disabled, silenced, or ignored. There does not seem to be an easy solution to this problem. So while I was a bit frustrated by intrusiveness of the incorrect alarms while talking with my patient, I repositioned the pulse oximeter probe as best I could, turned the alarm back on, and before leaving, made sure I talked to my patient’s nurse.

Noted by WVR, MD
Nutritional Supplements and Other Complementary Medicines for Infantile Colic: A Systematic Review
Rachel Perry, Katherine Hunt and Edzard Ernst

Pediatrics 2011;127;720; originally published online March 28, 2011; DOI: 10.1542/peds.2010-2098

Updated Information & Services
including high resolution figures, can be found at:
http://pediatrics.aappublications.org/content/127/4/720.full.html

Supplementary Material
Supplementary material can be found at:
http://pediatrics.aappublications.org/content/suppl/2011/03/16/peds.2010-2098.DC1.html

References
This article cites 30 articles, 9 of which can be accessed free at:
http://pediatrics.aappublications.org/content/127/4/720.full.html#ref-list-1

Citations
This article has been cited by 2 HighWire-hosted articles:
http://pediatrics.aappublications.org/content/127/4/720.full.html#related-urls

Post-Publication Peer Reviews (P3Rs)
One P3R has been posted to this article:
http://pediatrics.aappublications.org/cgi/eletters/127/4/720

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
Nutrition & Metabolism
http://pediatrics.aappublications.org/cgi/collection/nutrition_and_metabolism

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
http://pediatrics.aappublications.org/site/misc/Permissions.xhtml

Reprints
Information about ordering reprints can be found online:
http://pediatrics.aappublications.org/site/misc/reprints.xhtml